Photosensitizing and Inhibitory Effects of Ozonated Dissolved Organic Matter on Triplet-Induced Contaminant Transformation.
نویسندگان
چکیده
Dissolved organic matter (DOM) is both a promoter and an inhibitor of triplet-induced organic contaminant oxidation. This dual role was systematically investigated through photochemical experiments with three types of DOM of terrestrial and aquatic origins that were preoxidized to varying extents by ozonation. The inhibitory effect of DOM was assessed by determining the 4-carboxybenzophenone photosensitized transformation rate constants of two sulfonamide antibiotics (sulfamethoxazole and sulfadiazine) in the presence of untreated or preoxidized DOM. The inhibitory effect decreased with the increasing extent of DOM preoxidation, and it was correlated to the loss of phenolic antioxidant moieties, as quantified electrochemically, and to the loss of DOM ultraviolet absorbance. The triplet photosensitizing ability of preoxidized DOM was determined using the conversion of the probe compound 2,4,6-trimethylphenol (TMP), which is unaffected by DOM inhibition effects. The DOM photosensitized transformation rate constants of TMP decreased with increasing DOM preoxidation and were correlated to the concomitant loss of chromophores (i.e., photosensitizing moieties). The combined effects of DOM preoxidation on the inhibiting and photosensitizing properties were assessed by phototransformation experiments of the sulfonamides in DOM-containing solutions. At low extents of DOM preoxidation, the sulfonamide phototransformation rate constants remained either unchanged or slightly increased, indicating that the removal of antioxidant moieties had larger effects than the loss of photosensitizing moieties. At higher extents of DOM preoxidation, transformation rates declined, mainly reflecting the destruction of photosensitizing moieties.
منابع مشابه
Quenching of excited triplet states by dissolved natural organic matter.
Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical ...
متن کاملInfluence of wastewater particles on ozone degradation of trace organic contaminants.
In this Article, we demonstrate the influence of effluent particles (in the range of <50 μm) on ozone degradation of trace organic contaminants (TrOCs) and effluent-quality parameters. Secondary effluent was filtered through different pore-size filters and ozonated at various ozone doses. Degradation of both ozone-reactive and ozone-refractory contaminants improved following ozonation of efflue...
متن کاملEffect of Dissolved Organic Matter on the Transformation of 1 Contaminants induced by Excited Triplet States and Hydroxyl
متن کامل
Phototransformation of pesticides in prairie potholes: effect of dissolved organic matter in triplet-induced oxidation.
Photochemical reactions involving a variety of photosensitizers contribute to the abiotic transformation of pesticides in prairie pothole lakes (PPLs). Despite the fact that triplet excited state dissolved organic matter (DOM) enhances phototransformation of pesticides by acting as a photosensitizer, it may also decrease the overall phototransformation rate through various mechanisms. In this s...
متن کاملPhenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution.
Recent studies have shown that dissolved organic matter (DOM) may inhibit the excited triplet-induced oxidation of several aromatic water contaminants, in particular those containing an aniline functionality. Such an inhibition was ascribed to antioxidant moieties of DOM. The present study was conducted with the aim of verifying whether well-defined antioxidants could act as inhibitors in analo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 49 14 شماره
صفحات -
تاریخ انتشار 2015